You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1264 lines
34 KiB
1264 lines
34 KiB
// Copyright (c) 2005 Tom Wu |
|
// All Rights Reserved. |
|
// See "LICENSE" for details. |
|
|
|
// Basic JavaScript BN library - subset useful for RSA encryption. |
|
|
|
/* |
|
Licensing (LICENSE) |
|
------------------- |
|
|
|
This software is covered under the following copyright: |
|
*/ |
|
/* |
|
* Copyright (c) 2003-2005 Tom Wu |
|
* All Rights Reserved. |
|
* |
|
* Permission is hereby granted, free of charge, to any person obtaining |
|
* a copy of this software and associated documentation files (the |
|
* "Software"), to deal in the Software without restriction, including |
|
* without limitation the rights to use, copy, modify, merge, publish, |
|
* distribute, sublicense, and/or sell copies of the Software, and to |
|
* permit persons to whom the Software is furnished to do so, subject to |
|
* the following conditions: |
|
* |
|
* The above copyright notice and this permission notice shall be |
|
* included in all copies or substantial portions of the Software. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
|
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
|
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
|
* |
|
* IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, |
|
* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER |
|
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF |
|
* THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT |
|
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
|
* |
|
* In addition, the following condition applies: |
|
* |
|
* All redistributions must retain an intact copy of this copyright notice |
|
* and disclaimer. |
|
*/ |
|
/* |
|
Address all questions regarding this license to: |
|
|
|
Tom Wu |
|
tjw@cs.Stanford.EDU |
|
*/ |
|
var forge = require('./forge'); |
|
|
|
module.exports = forge.jsbn = forge.jsbn || {}; |
|
|
|
// Bits per digit |
|
var dbits; |
|
|
|
// JavaScript engine analysis |
|
var canary = 0xdeadbeefcafe; |
|
var j_lm = ((canary&0xffffff)==0xefcafe); |
|
|
|
// (public) Constructor |
|
function BigInteger(a,b,c) { |
|
this.data = []; |
|
if(a != null) |
|
if("number" == typeof a) this.fromNumber(a,b,c); |
|
else if(b == null && "string" != typeof a) this.fromString(a,256); |
|
else this.fromString(a,b); |
|
} |
|
forge.jsbn.BigInteger = BigInteger; |
|
|
|
// return new, unset BigInteger |
|
function nbi() { return new BigInteger(null); } |
|
|
|
// am: Compute w_j += (x*this_i), propagate carries, |
|
// c is initial carry, returns final carry. |
|
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue |
|
// We need to select the fastest one that works in this environment. |
|
|
|
// am1: use a single mult and divide to get the high bits, |
|
// max digit bits should be 26 because |
|
// max internal value = 2*dvalue^2-2*dvalue (< 2^53) |
|
function am1(i,x,w,j,c,n) { |
|
while(--n >= 0) { |
|
var v = x*this.data[i++]+w.data[j]+c; |
|
c = Math.floor(v/0x4000000); |
|
w.data[j++] = v&0x3ffffff; |
|
} |
|
return c; |
|
} |
|
// am2 avoids a big mult-and-extract completely. |
|
// Max digit bits should be <= 30 because we do bitwise ops |
|
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) |
|
function am2(i,x,w,j,c,n) { |
|
var xl = x&0x7fff, xh = x>>15; |
|
while(--n >= 0) { |
|
var l = this.data[i]&0x7fff; |
|
var h = this.data[i++]>>15; |
|
var m = xh*l+h*xl; |
|
l = xl*l+((m&0x7fff)<<15)+w.data[j]+(c&0x3fffffff); |
|
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); |
|
w.data[j++] = l&0x3fffffff; |
|
} |
|
return c; |
|
} |
|
// Alternately, set max digit bits to 28 since some |
|
// browsers slow down when dealing with 32-bit numbers. |
|
function am3(i,x,w,j,c,n) { |
|
var xl = x&0x3fff, xh = x>>14; |
|
while(--n >= 0) { |
|
var l = this.data[i]&0x3fff; |
|
var h = this.data[i++]>>14; |
|
var m = xh*l+h*xl; |
|
l = xl*l+((m&0x3fff)<<14)+w.data[j]+c; |
|
c = (l>>28)+(m>>14)+xh*h; |
|
w.data[j++] = l&0xfffffff; |
|
} |
|
return c; |
|
} |
|
|
|
// node.js (no browser) |
|
if(typeof(navigator) === 'undefined') |
|
{ |
|
BigInteger.prototype.am = am3; |
|
dbits = 28; |
|
} else if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { |
|
BigInteger.prototype.am = am2; |
|
dbits = 30; |
|
} else if(j_lm && (navigator.appName != "Netscape")) { |
|
BigInteger.prototype.am = am1; |
|
dbits = 26; |
|
} else { // Mozilla/Netscape seems to prefer am3 |
|
BigInteger.prototype.am = am3; |
|
dbits = 28; |
|
} |
|
|
|
BigInteger.prototype.DB = dbits; |
|
BigInteger.prototype.DM = ((1<<dbits)-1); |
|
BigInteger.prototype.DV = (1<<dbits); |
|
|
|
var BI_FP = 52; |
|
BigInteger.prototype.FV = Math.pow(2,BI_FP); |
|
BigInteger.prototype.F1 = BI_FP-dbits; |
|
BigInteger.prototype.F2 = 2*dbits-BI_FP; |
|
|
|
// Digit conversions |
|
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; |
|
var BI_RC = new Array(); |
|
var rr,vv; |
|
rr = "0".charCodeAt(0); |
|
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; |
|
rr = "a".charCodeAt(0); |
|
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
|
rr = "A".charCodeAt(0); |
|
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
|
|
|
function int2char(n) { return BI_RM.charAt(n); } |
|
function intAt(s,i) { |
|
var c = BI_RC[s.charCodeAt(i)]; |
|
return (c==null)?-1:c; |
|
} |
|
|
|
// (protected) copy this to r |
|
function bnpCopyTo(r) { |
|
for(var i = this.t-1; i >= 0; --i) r.data[i] = this.data[i]; |
|
r.t = this.t; |
|
r.s = this.s; |
|
} |
|
|
|
// (protected) set from integer value x, -DV <= x < DV |
|
function bnpFromInt(x) { |
|
this.t = 1; |
|
this.s = (x<0)?-1:0; |
|
if(x > 0) this.data[0] = x; |
|
else if(x < -1) this.data[0] = x+this.DV; |
|
else this.t = 0; |
|
} |
|
|
|
// return bigint initialized to value |
|
function nbv(i) { var r = nbi(); r.fromInt(i); return r; } |
|
|
|
// (protected) set from string and radix |
|
function bnpFromString(s,b) { |
|
var k; |
|
if(b == 16) k = 4; |
|
else if(b == 8) k = 3; |
|
else if(b == 256) k = 8; // byte array |
|
else if(b == 2) k = 1; |
|
else if(b == 32) k = 5; |
|
else if(b == 4) k = 2; |
|
else { this.fromRadix(s,b); return; } |
|
this.t = 0; |
|
this.s = 0; |
|
var i = s.length, mi = false, sh = 0; |
|
while(--i >= 0) { |
|
var x = (k==8)?s[i]&0xff:intAt(s,i); |
|
if(x < 0) { |
|
if(s.charAt(i) == "-") mi = true; |
|
continue; |
|
} |
|
mi = false; |
|
if(sh == 0) |
|
this.data[this.t++] = x; |
|
else if(sh+k > this.DB) { |
|
this.data[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; |
|
this.data[this.t++] = (x>>(this.DB-sh)); |
|
} else |
|
this.data[this.t-1] |= x<<sh; |
|
sh += k; |
|
if(sh >= this.DB) sh -= this.DB; |
|
} |
|
if(k == 8 && (s[0]&0x80) != 0) { |
|
this.s = -1; |
|
if(sh > 0) this.data[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; |
|
} |
|
this.clamp(); |
|
if(mi) BigInteger.ZERO.subTo(this,this); |
|
} |
|
|
|
// (protected) clamp off excess high words |
|
function bnpClamp() { |
|
var c = this.s&this.DM; |
|
while(this.t > 0 && this.data[this.t-1] == c) --this.t; |
|
} |
|
|
|
// (public) return string representation in given radix |
|
function bnToString(b) { |
|
if(this.s < 0) return "-"+this.negate().toString(b); |
|
var k; |
|
if(b == 16) k = 4; |
|
else if(b == 8) k = 3; |
|
else if(b == 2) k = 1; |
|
else if(b == 32) k = 5; |
|
else if(b == 4) k = 2; |
|
else return this.toRadix(b); |
|
var km = (1<<k)-1, d, m = false, r = "", i = this.t; |
|
var p = this.DB-(i*this.DB)%k; |
|
if(i-- > 0) { |
|
if(p < this.DB && (d = this.data[i]>>p) > 0) { m = true; r = int2char(d); } |
|
while(i >= 0) { |
|
if(p < k) { |
|
d = (this.data[i]&((1<<p)-1))<<(k-p); |
|
d |= this.data[--i]>>(p+=this.DB-k); |
|
} else { |
|
d = (this.data[i]>>(p-=k))&km; |
|
if(p <= 0) { p += this.DB; --i; } |
|
} |
|
if(d > 0) m = true; |
|
if(m) r += int2char(d); |
|
} |
|
} |
|
return m?r:"0"; |
|
} |
|
|
|
// (public) -this |
|
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } |
|
|
|
// (public) |this| |
|
function bnAbs() { return (this.s<0)?this.negate():this; } |
|
|
|
// (public) return + if this > a, - if this < a, 0 if equal |
|
function bnCompareTo(a) { |
|
var r = this.s-a.s; |
|
if(r != 0) return r; |
|
var i = this.t; |
|
r = i-a.t; |
|
if(r != 0) return (this.s<0)?-r:r; |
|
while(--i >= 0) if((r=this.data[i]-a.data[i]) != 0) return r; |
|
return 0; |
|
} |
|
|
|
// returns bit length of the integer x |
|
function nbits(x) { |
|
var r = 1, t; |
|
if((t=x>>>16) != 0) { x = t; r += 16; } |
|
if((t=x>>8) != 0) { x = t; r += 8; } |
|
if((t=x>>4) != 0) { x = t; r += 4; } |
|
if((t=x>>2) != 0) { x = t; r += 2; } |
|
if((t=x>>1) != 0) { x = t; r += 1; } |
|
return r; |
|
} |
|
|
|
// (public) return the number of bits in "this" |
|
function bnBitLength() { |
|
if(this.t <= 0) return 0; |
|
return this.DB*(this.t-1)+nbits(this.data[this.t-1]^(this.s&this.DM)); |
|
} |
|
|
|
// (protected) r = this << n*DB |
|
function bnpDLShiftTo(n,r) { |
|
var i; |
|
for(i = this.t-1; i >= 0; --i) r.data[i+n] = this.data[i]; |
|
for(i = n-1; i >= 0; --i) r.data[i] = 0; |
|
r.t = this.t+n; |
|
r.s = this.s; |
|
} |
|
|
|
// (protected) r = this >> n*DB |
|
function bnpDRShiftTo(n,r) { |
|
for(var i = n; i < this.t; ++i) r.data[i-n] = this.data[i]; |
|
r.t = Math.max(this.t-n,0); |
|
r.s = this.s; |
|
} |
|
|
|
// (protected) r = this << n |
|
function bnpLShiftTo(n,r) { |
|
var bs = n%this.DB; |
|
var cbs = this.DB-bs; |
|
var bm = (1<<cbs)-1; |
|
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; |
|
for(i = this.t-1; i >= 0; --i) { |
|
r.data[i+ds+1] = (this.data[i]>>cbs)|c; |
|
c = (this.data[i]&bm)<<bs; |
|
} |
|
for(i = ds-1; i >= 0; --i) r.data[i] = 0; |
|
r.data[ds] = c; |
|
r.t = this.t+ds+1; |
|
r.s = this.s; |
|
r.clamp(); |
|
} |
|
|
|
// (protected) r = this >> n |
|
function bnpRShiftTo(n,r) { |
|
r.s = this.s; |
|
var ds = Math.floor(n/this.DB); |
|
if(ds >= this.t) { r.t = 0; return; } |
|
var bs = n%this.DB; |
|
var cbs = this.DB-bs; |
|
var bm = (1<<bs)-1; |
|
r.data[0] = this.data[ds]>>bs; |
|
for(var i = ds+1; i < this.t; ++i) { |
|
r.data[i-ds-1] |= (this.data[i]&bm)<<cbs; |
|
r.data[i-ds] = this.data[i]>>bs; |
|
} |
|
if(bs > 0) r.data[this.t-ds-1] |= (this.s&bm)<<cbs; |
|
r.t = this.t-ds; |
|
r.clamp(); |
|
} |
|
|
|
// (protected) r = this - a |
|
function bnpSubTo(a,r) { |
|
var i = 0, c = 0, m = Math.min(a.t,this.t); |
|
while(i < m) { |
|
c += this.data[i]-a.data[i]; |
|
r.data[i++] = c&this.DM; |
|
c >>= this.DB; |
|
} |
|
if(a.t < this.t) { |
|
c -= a.s; |
|
while(i < this.t) { |
|
c += this.data[i]; |
|
r.data[i++] = c&this.DM; |
|
c >>= this.DB; |
|
} |
|
c += this.s; |
|
} else { |
|
c += this.s; |
|
while(i < a.t) { |
|
c -= a.data[i]; |
|
r.data[i++] = c&this.DM; |
|
c >>= this.DB; |
|
} |
|
c -= a.s; |
|
} |
|
r.s = (c<0)?-1:0; |
|
if(c < -1) r.data[i++] = this.DV+c; |
|
else if(c > 0) r.data[i++] = c; |
|
r.t = i; |
|
r.clamp(); |
|
} |
|
|
|
// (protected) r = this * a, r != this,a (HAC 14.12) |
|
// "this" should be the larger one if appropriate. |
|
function bnpMultiplyTo(a,r) { |
|
var x = this.abs(), y = a.abs(); |
|
var i = x.t; |
|
r.t = i+y.t; |
|
while(--i >= 0) r.data[i] = 0; |
|
for(i = 0; i < y.t; ++i) r.data[i+x.t] = x.am(0,y.data[i],r,i,0,x.t); |
|
r.s = 0; |
|
r.clamp(); |
|
if(this.s != a.s) BigInteger.ZERO.subTo(r,r); |
|
} |
|
|
|
// (protected) r = this^2, r != this (HAC 14.16) |
|
function bnpSquareTo(r) { |
|
var x = this.abs(); |
|
var i = r.t = 2*x.t; |
|
while(--i >= 0) r.data[i] = 0; |
|
for(i = 0; i < x.t-1; ++i) { |
|
var c = x.am(i,x.data[i],r,2*i,0,1); |
|
if((r.data[i+x.t]+=x.am(i+1,2*x.data[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { |
|
r.data[i+x.t] -= x.DV; |
|
r.data[i+x.t+1] = 1; |
|
} |
|
} |
|
if(r.t > 0) r.data[r.t-1] += x.am(i,x.data[i],r,2*i,0,1); |
|
r.s = 0; |
|
r.clamp(); |
|
} |
|
|
|
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) |
|
// r != q, this != m. q or r may be null. |
|
function bnpDivRemTo(m,q,r) { |
|
var pm = m.abs(); |
|
if(pm.t <= 0) return; |
|
var pt = this.abs(); |
|
if(pt.t < pm.t) { |
|
if(q != null) q.fromInt(0); |
|
if(r != null) this.copyTo(r); |
|
return; |
|
} |
|
if(r == null) r = nbi(); |
|
var y = nbi(), ts = this.s, ms = m.s; |
|
var nsh = this.DB-nbits(pm.data[pm.t-1]); // normalize modulus |
|
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } |
|
var ys = y.t; |
|
var y0 = y.data[ys-1]; |
|
if(y0 == 0) return; |
|
var yt = y0*(1<<this.F1)+((ys>1)?y.data[ys-2]>>this.F2:0); |
|
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; |
|
var i = r.t, j = i-ys, t = (q==null)?nbi():q; |
|
y.dlShiftTo(j,t); |
|
if(r.compareTo(t) >= 0) { |
|
r.data[r.t++] = 1; |
|
r.subTo(t,r); |
|
} |
|
BigInteger.ONE.dlShiftTo(ys,t); |
|
t.subTo(y,y); // "negative" y so we can replace sub with am later |
|
while(y.t < ys) y.data[y.t++] = 0; |
|
while(--j >= 0) { |
|
// Estimate quotient digit |
|
var qd = (r.data[--i]==y0)?this.DM:Math.floor(r.data[i]*d1+(r.data[i-1]+e)*d2); |
|
if((r.data[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out |
|
y.dlShiftTo(j,t); |
|
r.subTo(t,r); |
|
while(r.data[i] < --qd) r.subTo(t,r); |
|
} |
|
} |
|
if(q != null) { |
|
r.drShiftTo(ys,q); |
|
if(ts != ms) BigInteger.ZERO.subTo(q,q); |
|
} |
|
r.t = ys; |
|
r.clamp(); |
|
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder |
|
if(ts < 0) BigInteger.ZERO.subTo(r,r); |
|
} |
|
|
|
// (public) this mod a |
|
function bnMod(a) { |
|
var r = nbi(); |
|
this.abs().divRemTo(a,null,r); |
|
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); |
|
return r; |
|
} |
|
|
|
// Modular reduction using "classic" algorithm |
|
function Classic(m) { this.m = m; } |
|
function cConvert(x) { |
|
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); |
|
else return x; |
|
} |
|
function cRevert(x) { return x; } |
|
function cReduce(x) { x.divRemTo(this.m,null,x); } |
|
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
|
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
|
|
|
Classic.prototype.convert = cConvert; |
|
Classic.prototype.revert = cRevert; |
|
Classic.prototype.reduce = cReduce; |
|
Classic.prototype.mulTo = cMulTo; |
|
Classic.prototype.sqrTo = cSqrTo; |
|
|
|
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction |
|
// justification: |
|
// xy == 1 (mod m) |
|
// xy = 1+km |
|
// xy(2-xy) = (1+km)(1-km) |
|
// x[y(2-xy)] = 1-k^2m^2 |
|
// x[y(2-xy)] == 1 (mod m^2) |
|
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 |
|
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. |
|
// JS multiply "overflows" differently from C/C++, so care is needed here. |
|
function bnpInvDigit() { |
|
if(this.t < 1) return 0; |
|
var x = this.data[0]; |
|
if((x&1) == 0) return 0; |
|
var y = x&3; // y == 1/x mod 2^2 |
|
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 |
|
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 |
|
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 |
|
// last step - calculate inverse mod DV directly; |
|
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints |
|
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits |
|
// we really want the negative inverse, and -DV < y < DV |
|
return (y>0)?this.DV-y:-y; |
|
} |
|
|
|
// Montgomery reduction |
|
function Montgomery(m) { |
|
this.m = m; |
|
this.mp = m.invDigit(); |
|
this.mpl = this.mp&0x7fff; |
|
this.mph = this.mp>>15; |
|
this.um = (1<<(m.DB-15))-1; |
|
this.mt2 = 2*m.t; |
|
} |
|
|
|
// xR mod m |
|
function montConvert(x) { |
|
var r = nbi(); |
|
x.abs().dlShiftTo(this.m.t,r); |
|
r.divRemTo(this.m,null,r); |
|
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); |
|
return r; |
|
} |
|
|
|
// x/R mod m |
|
function montRevert(x) { |
|
var r = nbi(); |
|
x.copyTo(r); |
|
this.reduce(r); |
|
return r; |
|
} |
|
|
|
// x = x/R mod m (HAC 14.32) |
|
function montReduce(x) { |
|
while(x.t <= this.mt2) // pad x so am has enough room later |
|
x.data[x.t++] = 0; |
|
for(var i = 0; i < this.m.t; ++i) { |
|
// faster way of calculating u0 = x.data[i]*mp mod DV |
|
var j = x.data[i]&0x7fff; |
|
var u0 = (j*this.mpl+(((j*this.mph+(x.data[i]>>15)*this.mpl)&this.um)<<15))&x.DM; |
|
// use am to combine the multiply-shift-add into one call |
|
j = i+this.m.t; |
|
x.data[j] += this.m.am(0,u0,x,i,0,this.m.t); |
|
// propagate carry |
|
while(x.data[j] >= x.DV) { x.data[j] -= x.DV; x.data[++j]++; } |
|
} |
|
x.clamp(); |
|
x.drShiftTo(this.m.t,x); |
|
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); |
|
} |
|
|
|
// r = "x^2/R mod m"; x != r |
|
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
|
|
|
// r = "xy/R mod m"; x,y != r |
|
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
|
|
|
Montgomery.prototype.convert = montConvert; |
|
Montgomery.prototype.revert = montRevert; |
|
Montgomery.prototype.reduce = montReduce; |
|
Montgomery.prototype.mulTo = montMulTo; |
|
Montgomery.prototype.sqrTo = montSqrTo; |
|
|
|
// (protected) true iff this is even |
|
function bnpIsEven() { return ((this.t>0)?(this.data[0]&1):this.s) == 0; } |
|
|
|
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) |
|
function bnpExp(e,z) { |
|
if(e > 0xffffffff || e < 1) return BigInteger.ONE; |
|
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; |
|
g.copyTo(r); |
|
while(--i >= 0) { |
|
z.sqrTo(r,r2); |
|
if((e&(1<<i)) > 0) z.mulTo(r2,g,r); |
|
else { var t = r; r = r2; r2 = t; } |
|
} |
|
return z.revert(r); |
|
} |
|
|
|
// (public) this^e % m, 0 <= e < 2^32 |
|
function bnModPowInt(e,m) { |
|
var z; |
|
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); |
|
return this.exp(e,z); |
|
} |
|
|
|
// protected |
|
BigInteger.prototype.copyTo = bnpCopyTo; |
|
BigInteger.prototype.fromInt = bnpFromInt; |
|
BigInteger.prototype.fromString = bnpFromString; |
|
BigInteger.prototype.clamp = bnpClamp; |
|
BigInteger.prototype.dlShiftTo = bnpDLShiftTo; |
|
BigInteger.prototype.drShiftTo = bnpDRShiftTo; |
|
BigInteger.prototype.lShiftTo = bnpLShiftTo; |
|
BigInteger.prototype.rShiftTo = bnpRShiftTo; |
|
BigInteger.prototype.subTo = bnpSubTo; |
|
BigInteger.prototype.multiplyTo = bnpMultiplyTo; |
|
BigInteger.prototype.squareTo = bnpSquareTo; |
|
BigInteger.prototype.divRemTo = bnpDivRemTo; |
|
BigInteger.prototype.invDigit = bnpInvDigit; |
|
BigInteger.prototype.isEven = bnpIsEven; |
|
BigInteger.prototype.exp = bnpExp; |
|
|
|
// public |
|
BigInteger.prototype.toString = bnToString; |
|
BigInteger.prototype.negate = bnNegate; |
|
BigInteger.prototype.abs = bnAbs; |
|
BigInteger.prototype.compareTo = bnCompareTo; |
|
BigInteger.prototype.bitLength = bnBitLength; |
|
BigInteger.prototype.mod = bnMod; |
|
BigInteger.prototype.modPowInt = bnModPowInt; |
|
|
|
// "constants" |
|
BigInteger.ZERO = nbv(0); |
|
BigInteger.ONE = nbv(1); |
|
|
|
// jsbn2 lib |
|
|
|
//Copyright (c) 2005-2009 Tom Wu |
|
//All Rights Reserved. |
|
//See "LICENSE" for details (See jsbn.js for LICENSE). |
|
|
|
//Extended JavaScript BN functions, required for RSA private ops. |
|
|
|
//Version 1.1: new BigInteger("0", 10) returns "proper" zero |
|
|
|
//(public) |
|
function bnClone() { var r = nbi(); this.copyTo(r); return r; } |
|
|
|
//(public) return value as integer |
|
function bnIntValue() { |
|
if(this.s < 0) { |
|
if(this.t == 1) return this.data[0]-this.DV; |
|
else if(this.t == 0) return -1; |
|
} else if(this.t == 1) return this.data[0]; |
|
else if(this.t == 0) return 0; |
|
// assumes 16 < DB < 32 |
|
return ((this.data[1]&((1<<(32-this.DB))-1))<<this.DB)|this.data[0]; |
|
} |
|
|
|
//(public) return value as byte |
|
function bnByteValue() { return (this.t==0)?this.s:(this.data[0]<<24)>>24; } |
|
|
|
//(public) return value as short (assumes DB>=16) |
|
function bnShortValue() { return (this.t==0)?this.s:(this.data[0]<<16)>>16; } |
|
|
|
//(protected) return x s.t. r^x < DV |
|
function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } |
|
|
|
//(public) 0 if this == 0, 1 if this > 0 |
|
function bnSigNum() { |
|
if(this.s < 0) return -1; |
|
else if(this.t <= 0 || (this.t == 1 && this.data[0] <= 0)) return 0; |
|
else return 1; |
|
} |
|
|
|
//(protected) convert to radix string |
|
function bnpToRadix(b) { |
|
if(b == null) b = 10; |
|
if(this.signum() == 0 || b < 2 || b > 36) return "0"; |
|
var cs = this.chunkSize(b); |
|
var a = Math.pow(b,cs); |
|
var d = nbv(a), y = nbi(), z = nbi(), r = ""; |
|
this.divRemTo(d,y,z); |
|
while(y.signum() > 0) { |
|
r = (a+z.intValue()).toString(b).substr(1) + r; |
|
y.divRemTo(d,y,z); |
|
} |
|
return z.intValue().toString(b) + r; |
|
} |
|
|
|
//(protected) convert from radix string |
|
function bnpFromRadix(s,b) { |
|
this.fromInt(0); |
|
if(b == null) b = 10; |
|
var cs = this.chunkSize(b); |
|
var d = Math.pow(b,cs), mi = false, j = 0, w = 0; |
|
for(var i = 0; i < s.length; ++i) { |
|
var x = intAt(s,i); |
|
if(x < 0) { |
|
if(s.charAt(i) == "-" && this.signum() == 0) mi = true; |
|
continue; |
|
} |
|
w = b*w+x; |
|
if(++j >= cs) { |
|
this.dMultiply(d); |
|
this.dAddOffset(w,0); |
|
j = 0; |
|
w = 0; |
|
} |
|
} |
|
if(j > 0) { |
|
this.dMultiply(Math.pow(b,j)); |
|
this.dAddOffset(w,0); |
|
} |
|
if(mi) BigInteger.ZERO.subTo(this,this); |
|
} |
|
|
|
//(protected) alternate constructor |
|
function bnpFromNumber(a,b,c) { |
|
if("number" == typeof b) { |
|
// new BigInteger(int,int,RNG) |
|
if(a < 2) this.fromInt(1); |
|
else { |
|
this.fromNumber(a,c); |
|
if(!this.testBit(a-1)) // force MSB set |
|
this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); |
|
if(this.isEven()) this.dAddOffset(1,0); // force odd |
|
while(!this.isProbablePrime(b)) { |
|
this.dAddOffset(2,0); |
|
if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); |
|
} |
|
} |
|
} else { |
|
// new BigInteger(int,RNG) |
|
var x = new Array(), t = a&7; |
|
x.length = (a>>3)+1; |
|
b.nextBytes(x); |
|
if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; |
|
this.fromString(x,256); |
|
} |
|
} |
|
|
|
//(public) convert to bigendian byte array |
|
function bnToByteArray() { |
|
var i = this.t, r = new Array(); |
|
r[0] = this.s; |
|
var p = this.DB-(i*this.DB)%8, d, k = 0; |
|
if(i-- > 0) { |
|
if(p < this.DB && (d = this.data[i]>>p) != (this.s&this.DM)>>p) |
|
r[k++] = d|(this.s<<(this.DB-p)); |
|
while(i >= 0) { |
|
if(p < 8) { |
|
d = (this.data[i]&((1<<p)-1))<<(8-p); |
|
d |= this.data[--i]>>(p+=this.DB-8); |
|
} else { |
|
d = (this.data[i]>>(p-=8))&0xff; |
|
if(p <= 0) { p += this.DB; --i; } |
|
} |
|
if((d&0x80) != 0) d |= -256; |
|
if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; |
|
if(k > 0 || d != this.s) r[k++] = d; |
|
} |
|
} |
|
return r; |
|
} |
|
|
|
function bnEquals(a) { return(this.compareTo(a)==0); } |
|
function bnMin(a) { return(this.compareTo(a)<0)?this:a; } |
|
function bnMax(a) { return(this.compareTo(a)>0)?this:a; } |
|
|
|
//(protected) r = this op a (bitwise) |
|
function bnpBitwiseTo(a,op,r) { |
|
var i, f, m = Math.min(a.t,this.t); |
|
for(i = 0; i < m; ++i) r.data[i] = op(this.data[i],a.data[i]); |
|
if(a.t < this.t) { |
|
f = a.s&this.DM; |
|
for(i = m; i < this.t; ++i) r.data[i] = op(this.data[i],f); |
|
r.t = this.t; |
|
} else { |
|
f = this.s&this.DM; |
|
for(i = m; i < a.t; ++i) r.data[i] = op(f,a.data[i]); |
|
r.t = a.t; |
|
} |
|
r.s = op(this.s,a.s); |
|
r.clamp(); |
|
} |
|
|
|
//(public) this & a |
|
function op_and(x,y) { return x&y; } |
|
function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } |
|
|
|
//(public) this | a |
|
function op_or(x,y) { return x|y; } |
|
function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } |
|
|
|
//(public) this ^ a |
|
function op_xor(x,y) { return x^y; } |
|
function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } |
|
|
|
//(public) this & ~a |
|
function op_andnot(x,y) { return x&~y; } |
|
function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } |
|
|
|
//(public) ~this |
|
function bnNot() { |
|
var r = nbi(); |
|
for(var i = 0; i < this.t; ++i) r.data[i] = this.DM&~this.data[i]; |
|
r.t = this.t; |
|
r.s = ~this.s; |
|
return r; |
|
} |
|
|
|
//(public) this << n |
|
function bnShiftLeft(n) { |
|
var r = nbi(); |
|
if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); |
|
return r; |
|
} |
|
|
|
//(public) this >> n |
|
function bnShiftRight(n) { |
|
var r = nbi(); |
|
if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); |
|
return r; |
|
} |
|
|
|
//return index of lowest 1-bit in x, x < 2^31 |
|
function lbit(x) { |
|
if(x == 0) return -1; |
|
var r = 0; |
|
if((x&0xffff) == 0) { x >>= 16; r += 16; } |
|
if((x&0xff) == 0) { x >>= 8; r += 8; } |
|
if((x&0xf) == 0) { x >>= 4; r += 4; } |
|
if((x&3) == 0) { x >>= 2; r += 2; } |
|
if((x&1) == 0) ++r; |
|
return r; |
|
} |
|
|
|
//(public) returns index of lowest 1-bit (or -1 if none) |
|
function bnGetLowestSetBit() { |
|
for(var i = 0; i < this.t; ++i) |
|
if(this.data[i] != 0) return i*this.DB+lbit(this.data[i]); |
|
if(this.s < 0) return this.t*this.DB; |
|
return -1; |
|
} |
|
|
|
//return number of 1 bits in x |
|
function cbit(x) { |
|
var r = 0; |
|
while(x != 0) { x &= x-1; ++r; } |
|
return r; |
|
} |
|
|
|
//(public) return number of set bits |
|
function bnBitCount() { |
|
var r = 0, x = this.s&this.DM; |
|
for(var i = 0; i < this.t; ++i) r += cbit(this.data[i]^x); |
|
return r; |
|
} |
|
|
|
//(public) true iff nth bit is set |
|
function bnTestBit(n) { |
|
var j = Math.floor(n/this.DB); |
|
if(j >= this.t) return(this.s!=0); |
|
return((this.data[j]&(1<<(n%this.DB)))!=0); |
|
} |
|
|
|
//(protected) this op (1<<n) |
|
function bnpChangeBit(n,op) { |
|
var r = BigInteger.ONE.shiftLeft(n); |
|
this.bitwiseTo(r,op,r); |
|
return r; |
|
} |
|
|
|
//(public) this | (1<<n) |
|
function bnSetBit(n) { return this.changeBit(n,op_or); } |
|
|
|
//(public) this & ~(1<<n) |
|
function bnClearBit(n) { return this.changeBit(n,op_andnot); } |
|
|
|
//(public) this ^ (1<<n) |
|
function bnFlipBit(n) { return this.changeBit(n,op_xor); } |
|
|
|
//(protected) r = this + a |
|
function bnpAddTo(a,r) { |
|
var i = 0, c = 0, m = Math.min(a.t,this.t); |
|
while(i < m) { |
|
c += this.data[i]+a.data[i]; |
|
r.data[i++] = c&this.DM; |
|
c >>= this.DB; |
|
} |
|
if(a.t < this.t) { |
|
c += a.s; |
|
while(i < this.t) { |
|
c += this.data[i]; |
|
r.data[i++] = c&this.DM; |
|
c >>= this.DB; |
|
} |
|
c += this.s; |
|
} else { |
|
c += this.s; |
|
while(i < a.t) { |
|
c += a.data[i]; |
|
r.data[i++] = c&this.DM; |
|
c >>= this.DB; |
|
} |
|
c += a.s; |
|
} |
|
r.s = (c<0)?-1:0; |
|
if(c > 0) r.data[i++] = c; |
|
else if(c < -1) r.data[i++] = this.DV+c; |
|
r.t = i; |
|
r.clamp(); |
|
} |
|
|
|
//(public) this + a |
|
function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } |
|
|
|
//(public) this - a |
|
function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } |
|
|
|
//(public) this * a |
|
function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } |
|
|
|
//(public) this / a |
|
function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } |
|
|
|
//(public) this % a |
|
function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } |
|
|
|
//(public) [this/a,this%a] |
|
function bnDivideAndRemainder(a) { |
|
var q = nbi(), r = nbi(); |
|
this.divRemTo(a,q,r); |
|
return new Array(q,r); |
|
} |
|
|
|
//(protected) this *= n, this >= 0, 1 < n < DV |
|
function bnpDMultiply(n) { |
|
this.data[this.t] = this.am(0,n-1,this,0,0,this.t); |
|
++this.t; |
|
this.clamp(); |
|
} |
|
|
|
//(protected) this += n << w words, this >= 0 |
|
function bnpDAddOffset(n,w) { |
|
if(n == 0) return; |
|
while(this.t <= w) this.data[this.t++] = 0; |
|
this.data[w] += n; |
|
while(this.data[w] >= this.DV) { |
|
this.data[w] -= this.DV; |
|
if(++w >= this.t) this.data[this.t++] = 0; |
|
++this.data[w]; |
|
} |
|
} |
|
|
|
//A "null" reducer |
|
function NullExp() {} |
|
function nNop(x) { return x; } |
|
function nMulTo(x,y,r) { x.multiplyTo(y,r); } |
|
function nSqrTo(x,r) { x.squareTo(r); } |
|
|
|
NullExp.prototype.convert = nNop; |
|
NullExp.prototype.revert = nNop; |
|
NullExp.prototype.mulTo = nMulTo; |
|
NullExp.prototype.sqrTo = nSqrTo; |
|
|
|
//(public) this^e |
|
function bnPow(e) { return this.exp(e,new NullExp()); } |
|
|
|
//(protected) r = lower n words of "this * a", a.t <= n |
|
//"this" should be the larger one if appropriate. |
|
function bnpMultiplyLowerTo(a,n,r) { |
|
var i = Math.min(this.t+a.t,n); |
|
r.s = 0; // assumes a,this >= 0 |
|
r.t = i; |
|
while(i > 0) r.data[--i] = 0; |
|
var j; |
|
for(j = r.t-this.t; i < j; ++i) r.data[i+this.t] = this.am(0,a.data[i],r,i,0,this.t); |
|
for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a.data[i],r,i,0,n-i); |
|
r.clamp(); |
|
} |
|
|
|
//(protected) r = "this * a" without lower n words, n > 0 |
|
//"this" should be the larger one if appropriate. |
|
function bnpMultiplyUpperTo(a,n,r) { |
|
--n; |
|
var i = r.t = this.t+a.t-n; |
|
r.s = 0; // assumes a,this >= 0 |
|
while(--i >= 0) r.data[i] = 0; |
|
for(i = Math.max(n-this.t,0); i < a.t; ++i) |
|
r.data[this.t+i-n] = this.am(n-i,a.data[i],r,0,0,this.t+i-n); |
|
r.clamp(); |
|
r.drShiftTo(1,r); |
|
} |
|
|
|
//Barrett modular reduction |
|
function Barrett(m) { |
|
// setup Barrett |
|
this.r2 = nbi(); |
|
this.q3 = nbi(); |
|
BigInteger.ONE.dlShiftTo(2*m.t,this.r2); |
|
this.mu = this.r2.divide(m); |
|
this.m = m; |
|
} |
|
|
|
function barrettConvert(x) { |
|
if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); |
|
else if(x.compareTo(this.m) < 0) return x; |
|
else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } |
|
} |
|
|
|
function barrettRevert(x) { return x; } |
|
|
|
//x = x mod m (HAC 14.42) |
|
function barrettReduce(x) { |
|
x.drShiftTo(this.m.t-1,this.r2); |
|
if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } |
|
this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); |
|
this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); |
|
while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); |
|
x.subTo(this.r2,x); |
|
while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); |
|
} |
|
|
|
//r = x^2 mod m; x != r |
|
function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
|
|
|
//r = x*y mod m; x,y != r |
|
function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
|
|
|
Barrett.prototype.convert = barrettConvert; |
|
Barrett.prototype.revert = barrettRevert; |
|
Barrett.prototype.reduce = barrettReduce; |
|
Barrett.prototype.mulTo = barrettMulTo; |
|
Barrett.prototype.sqrTo = barrettSqrTo; |
|
|
|
//(public) this^e % m (HAC 14.85) |
|
function bnModPow(e,m) { |
|
var i = e.bitLength(), k, r = nbv(1), z; |
|
if(i <= 0) return r; |
|
else if(i < 18) k = 1; |
|
else if(i < 48) k = 3; |
|
else if(i < 144) k = 4; |
|
else if(i < 768) k = 5; |
|
else k = 6; |
|
if(i < 8) |
|
z = new Classic(m); |
|
else if(m.isEven()) |
|
z = new Barrett(m); |
|
else |
|
z = new Montgomery(m); |
|
|
|
// precomputation |
|
var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; |
|
g[1] = z.convert(this); |
|
if(k > 1) { |
|
var g2 = nbi(); |
|
z.sqrTo(g[1],g2); |
|
while(n <= km) { |
|
g[n] = nbi(); |
|
z.mulTo(g2,g[n-2],g[n]); |
|
n += 2; |
|
} |
|
} |
|
|
|
var j = e.t-1, w, is1 = true, r2 = nbi(), t; |
|
i = nbits(e.data[j])-1; |
|
while(j >= 0) { |
|
if(i >= k1) w = (e.data[j]>>(i-k1))&km; |
|
else { |
|
w = (e.data[j]&((1<<(i+1))-1))<<(k1-i); |
|
if(j > 0) w |= e.data[j-1]>>(this.DB+i-k1); |
|
} |
|
|
|
n = k; |
|
while((w&1) == 0) { w >>= 1; --n; } |
|
if((i -= n) < 0) { i += this.DB; --j; } |
|
if(is1) { // ret == 1, don't bother squaring or multiplying it |
|
g[w].copyTo(r); |
|
is1 = false; |
|
} else { |
|
while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } |
|
if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } |
|
z.mulTo(r2,g[w],r); |
|
} |
|
|
|
while(j >= 0 && (e.data[j]&(1<<i)) == 0) { |
|
z.sqrTo(r,r2); t = r; r = r2; r2 = t; |
|
if(--i < 0) { i = this.DB-1; --j; } |
|
} |
|
} |
|
return z.revert(r); |
|
} |
|
|
|
//(public) gcd(this,a) (HAC 14.54) |
|
function bnGCD(a) { |
|
var x = (this.s<0)?this.negate():this.clone(); |
|
var y = (a.s<0)?a.negate():a.clone(); |
|
if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } |
|
var i = x.getLowestSetBit(), g = y.getLowestSetBit(); |
|
if(g < 0) return x; |
|
if(i < g) g = i; |
|
if(g > 0) { |
|
x.rShiftTo(g,x); |
|
y.rShiftTo(g,y); |
|
} |
|
while(x.signum() > 0) { |
|
if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); |
|
if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); |
|
if(x.compareTo(y) >= 0) { |
|
x.subTo(y,x); |
|
x.rShiftTo(1,x); |
|
} else { |
|
y.subTo(x,y); |
|
y.rShiftTo(1,y); |
|
} |
|
} |
|
if(g > 0) y.lShiftTo(g,y); |
|
return y; |
|
} |
|
|
|
//(protected) this % n, n < 2^26 |
|
function bnpModInt(n) { |
|
if(n <= 0) return 0; |
|
var d = this.DV%n, r = (this.s<0)?n-1:0; |
|
if(this.t > 0) |
|
if(d == 0) r = this.data[0]%n; |
|
else for(var i = this.t-1; i >= 0; --i) r = (d*r+this.data[i])%n; |
|
return r; |
|
} |
|
|
|
//(public) 1/this % m (HAC 14.61) |
|
function bnModInverse(m) { |
|
var ac = m.isEven(); |
|
if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; |
|
var u = m.clone(), v = this.clone(); |
|
var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); |
|
while(u.signum() != 0) { |
|
while(u.isEven()) { |
|
u.rShiftTo(1,u); |
|
if(ac) { |
|
if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } |
|
a.rShiftTo(1,a); |
|
} else if(!b.isEven()) b.subTo(m,b); |
|
b.rShiftTo(1,b); |
|
} |
|
while(v.isEven()) { |
|
v.rShiftTo(1,v); |
|
if(ac) { |
|
if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } |
|
c.rShiftTo(1,c); |
|
} else if(!d.isEven()) d.subTo(m,d); |
|
d.rShiftTo(1,d); |
|
} |
|
if(u.compareTo(v) >= 0) { |
|
u.subTo(v,u); |
|
if(ac) a.subTo(c,a); |
|
b.subTo(d,b); |
|
} else { |
|
v.subTo(u,v); |
|
if(ac) c.subTo(a,c); |
|
d.subTo(b,d); |
|
} |
|
} |
|
if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; |
|
if(d.compareTo(m) >= 0) return d.subtract(m); |
|
if(d.signum() < 0) d.addTo(m,d); else return d; |
|
if(d.signum() < 0) return d.add(m); else return d; |
|
} |
|
|
|
var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; |
|
var lplim = (1<<26)/lowprimes[lowprimes.length-1]; |
|
|
|
//(public) test primality with certainty >= 1-.5^t |
|
function bnIsProbablePrime(t) { |
|
var i, x = this.abs(); |
|
if(x.t == 1 && x.data[0] <= lowprimes[lowprimes.length-1]) { |
|
for(i = 0; i < lowprimes.length; ++i) |
|
if(x.data[0] == lowprimes[i]) return true; |
|
return false; |
|
} |
|
if(x.isEven()) return false; |
|
i = 1; |
|
while(i < lowprimes.length) { |
|
var m = lowprimes[i], j = i+1; |
|
while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; |
|
m = x.modInt(m); |
|
while(i < j) if(m%lowprimes[i++] == 0) return false; |
|
} |
|
return x.millerRabin(t); |
|
} |
|
|
|
//(protected) true if probably prime (HAC 4.24, Miller-Rabin) |
|
function bnpMillerRabin(t) { |
|
var n1 = this.subtract(BigInteger.ONE); |
|
var k = n1.getLowestSetBit(); |
|
if(k <= 0) return false; |
|
var r = n1.shiftRight(k); |
|
var prng = bnGetPrng(); |
|
var a; |
|
for(var i = 0; i < t; ++i) { |
|
// select witness 'a' at random from between 1 and n1 |
|
do { |
|
a = new BigInteger(this.bitLength(), prng); |
|
} |
|
while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0); |
|
var y = a.modPow(r,this); |
|
if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { |
|
var j = 1; |
|
while(j++ < k && y.compareTo(n1) != 0) { |
|
y = y.modPowInt(2,this); |
|
if(y.compareTo(BigInteger.ONE) == 0) return false; |
|
} |
|
if(y.compareTo(n1) != 0) return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
// get pseudo random number generator |
|
function bnGetPrng() { |
|
// create prng with api that matches BigInteger secure random |
|
return { |
|
// x is an array to fill with bytes |
|
nextBytes: function(x) { |
|
for(var i = 0; i < x.length; ++i) { |
|
x[i] = Math.floor(Math.random() * 0x0100); |
|
} |
|
} |
|
}; |
|
} |
|
|
|
//protected |
|
BigInteger.prototype.chunkSize = bnpChunkSize; |
|
BigInteger.prototype.toRadix = bnpToRadix; |
|
BigInteger.prototype.fromRadix = bnpFromRadix; |
|
BigInteger.prototype.fromNumber = bnpFromNumber; |
|
BigInteger.prototype.bitwiseTo = bnpBitwiseTo; |
|
BigInteger.prototype.changeBit = bnpChangeBit; |
|
BigInteger.prototype.addTo = bnpAddTo; |
|
BigInteger.prototype.dMultiply = bnpDMultiply; |
|
BigInteger.prototype.dAddOffset = bnpDAddOffset; |
|
BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; |
|
BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; |
|
BigInteger.prototype.modInt = bnpModInt; |
|
BigInteger.prototype.millerRabin = bnpMillerRabin; |
|
|
|
//public |
|
BigInteger.prototype.clone = bnClone; |
|
BigInteger.prototype.intValue = bnIntValue; |
|
BigInteger.prototype.byteValue = bnByteValue; |
|
BigInteger.prototype.shortValue = bnShortValue; |
|
BigInteger.prototype.signum = bnSigNum; |
|
BigInteger.prototype.toByteArray = bnToByteArray; |
|
BigInteger.prototype.equals = bnEquals; |
|
BigInteger.prototype.min = bnMin; |
|
BigInteger.prototype.max = bnMax; |
|
BigInteger.prototype.and = bnAnd; |
|
BigInteger.prototype.or = bnOr; |
|
BigInteger.prototype.xor = bnXor; |
|
BigInteger.prototype.andNot = bnAndNot; |
|
BigInteger.prototype.not = bnNot; |
|
BigInteger.prototype.shiftLeft = bnShiftLeft; |
|
BigInteger.prototype.shiftRight = bnShiftRight; |
|
BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; |
|
BigInteger.prototype.bitCount = bnBitCount; |
|
BigInteger.prototype.testBit = bnTestBit; |
|
BigInteger.prototype.setBit = bnSetBit; |
|
BigInteger.prototype.clearBit = bnClearBit; |
|
BigInteger.prototype.flipBit = bnFlipBit; |
|
BigInteger.prototype.add = bnAdd; |
|
BigInteger.prototype.subtract = bnSubtract; |
|
BigInteger.prototype.multiply = bnMultiply; |
|
BigInteger.prototype.divide = bnDivide; |
|
BigInteger.prototype.remainder = bnRemainder; |
|
BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; |
|
BigInteger.prototype.modPow = bnModPow; |
|
BigInteger.prototype.modInverse = bnModInverse; |
|
BigInteger.prototype.pow = bnPow; |
|
BigInteger.prototype.gcd = bnGCD; |
|
BigInteger.prototype.isProbablePrime = bnIsProbablePrime; |
|
|
|
//BigInteger interfaces not implemented in jsbn: |
|
|
|
//BigInteger(int signum, byte[] magnitude) |
|
//double doubleValue() |
|
//float floatValue() |
|
//int hashCode() |
|
//long longValue() |
|
//static BigInteger valueOf(long val)
|
|
|