You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
379 lines
10 KiB
379 lines
10 KiB
'use strict'; |
|
|
|
const regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/; |
|
const regTransformSplit = |
|
/\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/; |
|
const regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g; |
|
|
|
/** |
|
* @typedef {{ name: string, data: Array<number> }} TransformItem |
|
*/ |
|
|
|
/** |
|
* Convert transform string to JS representation. |
|
* |
|
* @type {(transformString: string) => Array<TransformItem>} |
|
*/ |
|
exports.transform2js = (transformString) => { |
|
// JS representation of the transform data |
|
/** |
|
* @type {Array<TransformItem>} |
|
*/ |
|
const transforms = []; |
|
// current transform context |
|
/** |
|
* @type {null | TransformItem} |
|
*/ |
|
let current = null; |
|
// split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', ''] |
|
for (const item of transformString.split(regTransformSplit)) { |
|
var num; |
|
if (item) { |
|
// if item is a translate function |
|
if (regTransformTypes.test(item)) { |
|
// then collect it and change current context |
|
current = { name: item, data: [] }; |
|
transforms.push(current); |
|
// else if item is data |
|
} else { |
|
// then split it into [10, 50] and collect as context.data |
|
// eslint-disable-next-line no-cond-assign |
|
while ((num = regNumericValues.exec(item))) { |
|
num = Number(num); |
|
if (current != null) { |
|
current.data.push(num); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
// return empty array if broken transform (no data) |
|
return current == null || current.data.length == 0 ? [] : transforms; |
|
}; |
|
|
|
/** |
|
* Multiply transforms into one. |
|
* |
|
* @type {(transforms: Array<TransformItem>) => TransformItem} |
|
*/ |
|
exports.transformsMultiply = (transforms) => { |
|
// convert transforms objects to the matrices |
|
const matrixData = transforms.map((transform) => { |
|
if (transform.name === 'matrix') { |
|
return transform.data; |
|
} |
|
return transformToMatrix(transform); |
|
}); |
|
// multiply all matrices into one |
|
const matrixTransform = { |
|
name: 'matrix', |
|
data: |
|
matrixData.length > 0 ? matrixData.reduce(multiplyTransformMatrices) : [], |
|
}; |
|
return matrixTransform; |
|
}; |
|
|
|
/** |
|
* math utilities in radians. |
|
*/ |
|
const mth = { |
|
/** |
|
* @type {(deg: number) => number} |
|
*/ |
|
rad: (deg) => { |
|
return (deg * Math.PI) / 180; |
|
}, |
|
|
|
/** |
|
* @type {(rad: number) => number} |
|
*/ |
|
deg: (rad) => { |
|
return (rad * 180) / Math.PI; |
|
}, |
|
|
|
/** |
|
* @type {(deg: number) => number} |
|
*/ |
|
cos: (deg) => { |
|
return Math.cos(mth.rad(deg)); |
|
}, |
|
|
|
/** |
|
* @type {(val: number, floatPrecision: number) => number} |
|
*/ |
|
acos: (val, floatPrecision) => { |
|
return Number(mth.deg(Math.acos(val)).toFixed(floatPrecision)); |
|
}, |
|
|
|
/** |
|
* @type {(deg: number) => number} |
|
*/ |
|
sin: (deg) => { |
|
return Math.sin(mth.rad(deg)); |
|
}, |
|
|
|
/** |
|
* @type {(val: number, floatPrecision: number) => number} |
|
*/ |
|
asin: (val, floatPrecision) => { |
|
return Number(mth.deg(Math.asin(val)).toFixed(floatPrecision)); |
|
}, |
|
|
|
/** |
|
* @type {(deg: number) => number} |
|
*/ |
|
tan: (deg) => { |
|
return Math.tan(mth.rad(deg)); |
|
}, |
|
|
|
/** |
|
* @type {(val: number, floatPrecision: number) => number} |
|
*/ |
|
atan: (val, floatPrecision) => { |
|
return Number(mth.deg(Math.atan(val)).toFixed(floatPrecision)); |
|
}, |
|
}; |
|
|
|
/** |
|
* @typedef {{ |
|
* convertToShorts: boolean, |
|
* floatPrecision: number, |
|
* transformPrecision: number, |
|
* matrixToTransform: boolean, |
|
* shortTranslate: boolean, |
|
* shortScale: boolean, |
|
* shortRotate: boolean, |
|
* removeUseless: boolean, |
|
* collapseIntoOne: boolean, |
|
* leadingZero: boolean, |
|
* negativeExtraSpace: boolean, |
|
* }} TransformParams |
|
*/ |
|
|
|
/** |
|
* Decompose matrix into simple transforms. See |
|
* https://frederic-wang.fr/decomposition-of-2d-transform-matrices.html |
|
* |
|
* @type {(transform: TransformItem, params: TransformParams) => Array<TransformItem>} |
|
*/ |
|
exports.matrixToTransform = (transform, params) => { |
|
let floatPrecision = params.floatPrecision; |
|
let data = transform.data; |
|
let transforms = []; |
|
let sx = Number( |
|
Math.hypot(data[0], data[1]).toFixed(params.transformPrecision) |
|
); |
|
let sy = Number( |
|
((data[0] * data[3] - data[1] * data[2]) / sx).toFixed( |
|
params.transformPrecision |
|
) |
|
); |
|
let colsSum = data[0] * data[2] + data[1] * data[3]; |
|
let rowsSum = data[0] * data[1] + data[2] * data[3]; |
|
let scaleBefore = rowsSum != 0 || sx == sy; |
|
|
|
// [..., ..., ..., ..., tx, ty] → translate(tx, ty) |
|
if (data[4] || data[5]) { |
|
transforms.push({ |
|
name: 'translate', |
|
data: data.slice(4, data[5] ? 6 : 5), |
|
}); |
|
} |
|
|
|
// [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy) |
|
if (!data[1] && data[2]) { |
|
transforms.push({ |
|
name: 'skewX', |
|
data: [mth.atan(data[2] / sy, floatPrecision)], |
|
}); |
|
|
|
// [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy) |
|
} else if (data[1] && !data[2]) { |
|
transforms.push({ |
|
name: 'skewY', |
|
data: [mth.atan(data[1] / data[0], floatPrecision)], |
|
}); |
|
sx = data[0]; |
|
sy = data[3]; |
|
|
|
// [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or |
|
// [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore) |
|
} else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) { |
|
if (!scaleBefore) { |
|
sx = (data[0] < 0 ? -1 : 1) * Math.hypot(data[0], data[2]); |
|
sy = (data[3] < 0 ? -1 : 1) * Math.hypot(data[1], data[3]); |
|
transforms.push({ name: 'scale', data: [sx, sy] }); |
|
} |
|
var angle = Math.min(Math.max(-1, data[0] / sx), 1), |
|
rotate = [ |
|
mth.acos(angle, floatPrecision) * |
|
((scaleBefore ? 1 : sy) * data[1] < 0 ? -1 : 1), |
|
]; |
|
|
|
if (rotate[0]) transforms.push({ name: 'rotate', data: rotate }); |
|
|
|
if (rowsSum && colsSum) |
|
transforms.push({ |
|
name: 'skewX', |
|
data: [mth.atan(colsSum / (sx * sx), floatPrecision)], |
|
}); |
|
|
|
// rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point) |
|
if (rotate[0] && (data[4] || data[5])) { |
|
transforms.shift(); |
|
var cos = data[0] / sx, |
|
sin = data[1] / (scaleBefore ? sx : sy), |
|
x = data[4] * (scaleBefore ? 1 : sy), |
|
y = data[5] * (scaleBefore ? 1 : sx), |
|
denom = |
|
(Math.pow(1 - cos, 2) + Math.pow(sin, 2)) * |
|
(scaleBefore ? 1 : sx * sy); |
|
rotate.push(((1 - cos) * x - sin * y) / denom); |
|
rotate.push(((1 - cos) * y + sin * x) / denom); |
|
} |
|
|
|
// Too many transformations, return original matrix if it isn't just a scale/translate |
|
} else if (data[1] || data[2]) { |
|
return [transform]; |
|
} |
|
|
|
if ((scaleBefore && (sx != 1 || sy != 1)) || !transforms.length) |
|
transforms.push({ |
|
name: 'scale', |
|
data: sx == sy ? [sx] : [sx, sy], |
|
}); |
|
|
|
return transforms; |
|
}; |
|
|
|
/** |
|
* Convert transform to the matrix data. |
|
* |
|
* @type {(transform: TransformItem) => Array<number> } |
|
*/ |
|
const transformToMatrix = (transform) => { |
|
if (transform.name === 'matrix') { |
|
return transform.data; |
|
} |
|
switch (transform.name) { |
|
case 'translate': |
|
// [1, 0, 0, 1, tx, ty] |
|
return [1, 0, 0, 1, transform.data[0], transform.data[1] || 0]; |
|
case 'scale': |
|
// [sx, 0, 0, sy, 0, 0] |
|
return [ |
|
transform.data[0], |
|
0, |
|
0, |
|
transform.data[1] || transform.data[0], |
|
0, |
|
0, |
|
]; |
|
case 'rotate': |
|
// [cos(a), sin(a), -sin(a), cos(a), x, y] |
|
var cos = mth.cos(transform.data[0]), |
|
sin = mth.sin(transform.data[0]), |
|
cx = transform.data[1] || 0, |
|
cy = transform.data[2] || 0; |
|
return [ |
|
cos, |
|
sin, |
|
-sin, |
|
cos, |
|
(1 - cos) * cx + sin * cy, |
|
(1 - cos) * cy - sin * cx, |
|
]; |
|
case 'skewX': |
|
// [1, 0, tan(a), 1, 0, 0] |
|
return [1, 0, mth.tan(transform.data[0]), 1, 0, 0]; |
|
case 'skewY': |
|
// [1, tan(a), 0, 1, 0, 0] |
|
return [1, mth.tan(transform.data[0]), 0, 1, 0, 0]; |
|
default: |
|
throw Error(`Unknown transform ${transform.name}`); |
|
} |
|
}; |
|
|
|
/** |
|
* Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it |
|
* by the transformation matrix and use a singular value decomposition to represent in a form |
|
* rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ. |
|
* SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}}) |
|
* |
|
* @type {( |
|
* cursor: [x: number, y: number], |
|
* arc: Array<number>, |
|
* transform: Array<number> |
|
* ) => Array<number>} |
|
*/ |
|
exports.transformArc = (cursor, arc, transform) => { |
|
const x = arc[5] - cursor[0]; |
|
const y = arc[6] - cursor[1]; |
|
let a = arc[0]; |
|
let b = arc[1]; |
|
const rot = (arc[2] * Math.PI) / 180; |
|
const cos = Math.cos(rot); |
|
const sin = Math.sin(rot); |
|
// skip if radius is 0 |
|
if (a > 0 && b > 0) { |
|
let h = |
|
Math.pow(x * cos + y * sin, 2) / (4 * a * a) + |
|
Math.pow(y * cos - x * sin, 2) / (4 * b * b); |
|
if (h > 1) { |
|
h = Math.sqrt(h); |
|
a *= h; |
|
b *= h; |
|
} |
|
} |
|
const ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0]; |
|
const m = multiplyTransformMatrices(transform, ellipse); |
|
// Decompose the new ellipse matrix |
|
const lastCol = m[2] * m[2] + m[3] * m[3]; |
|
const squareSum = m[0] * m[0] + m[1] * m[1] + lastCol; |
|
const root = |
|
Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]); |
|
|
|
if (!root) { |
|
// circle |
|
arc[0] = arc[1] = Math.sqrt(squareSum / 2); |
|
arc[2] = 0; |
|
} else { |
|
const majorAxisSqr = (squareSum + root) / 2; |
|
const minorAxisSqr = (squareSum - root) / 2; |
|
const major = Math.abs(majorAxisSqr - lastCol) > 1e-6; |
|
const sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol; |
|
const rowsSum = m[0] * m[2] + m[1] * m[3]; |
|
const term1 = m[0] * sub + m[2] * rowsSum; |
|
const term2 = m[1] * sub + m[3] * rowsSum; |
|
arc[0] = Math.sqrt(majorAxisSqr); |
|
arc[1] = Math.sqrt(minorAxisSqr); |
|
arc[2] = |
|
(((major ? term2 < 0 : term1 > 0) ? -1 : 1) * |
|
Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) * |
|
180) / |
|
Math.PI; |
|
} |
|
|
|
if (transform[0] < 0 !== transform[3] < 0) { |
|
// Flip the sweep flag if coordinates are being flipped horizontally XOR vertically |
|
arc[4] = 1 - arc[4]; |
|
} |
|
|
|
return arc; |
|
}; |
|
|
|
/** |
|
* Multiply transformation matrices. |
|
* |
|
* @type {(a: Array<number>, b: Array<number>) => Array<number>} |
|
*/ |
|
const multiplyTransformMatrices = (a, b) => { |
|
return [ |
|
a[0] * b[0] + a[2] * b[1], |
|
a[1] * b[0] + a[3] * b[1], |
|
a[0] * b[2] + a[2] * b[3], |
|
a[1] * b[2] + a[3] * b[3], |
|
a[0] * b[4] + a[2] * b[5] + a[4], |
|
a[1] * b[4] + a[3] * b[5] + a[5], |
|
]; |
|
};
|
|
|